HOMEWORK II (DUE DATE: 10/04/2023)

Exercise 1 (2 points). Find the Green's function for $\Delta u=0$ on the following domain Ω.
(1) $\Omega=\left\{(x, y) \in \mathbb{R}^{2}:-\infty<x<\infty, 0<y<\infty\right\}$.
(2) $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\infty, 0<y<\infty\right\}$.

Exercise 2 (2 points). Find the Green's function for $u_{t}-\Delta u=0$ on the following domain Ω.
(1) $\Omega=\{x \in \mathbb{R}: 0<x<l\}$.
(2) $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\infty, 0<y<\infty\right\}$.

Exercise 3 (2 points). Solve the following problems:
(1) $\begin{cases}u_{t}(t, x)=u_{x x}(t, x)+u(t, x), & (t, x) \in(0, \infty) \times \mathbb{R}, \\ u(0, x)=\phi(x), & x \in \mathbb{R} .\end{cases}$
(2) $\begin{cases}u_{t}(t, x)=u_{x x}(t, x)+u_{x}(t, x), & (t, x) \in(0, \infty) \times \mathbb{R}, \\ u(0, x)=\phi(x), & x \in \mathbb{R} .\end{cases}$

Exercise 4 (2 points). Let $u \in C^{1,2}((0, \infty) \times(0,1)) \cap C([0, \infty) \times[0,1])$ be the solution to the following problems,

$$
\begin{aligned}
u_{t}(t, x)-u_{x x}(t, x) & =0, \quad(t, x) \in(0, \infty) \times(0,1), \\
u(0, x) & =x(1-x), \quad x \in[0,1] \\
u(t, 0) & =u(t, 1)=0, \quad t \in[0, \infty)
\end{aligned}
$$

Prove
(1) u is non-negative.
(2) u decays to 0 uniformly as time goes to infinity. (Hints: show that $u(t, x) \leq$ $x(1-x) e^{-t}$.)

Exercise 5 (2 points). Let $u \in C^{1,2}((0, T) \times \mathbb{R}) \cap C([0, T] \times \mathbb{R})$ be the solution to the following problems,

$$
\begin{align*}
u_{t}(t, x)-u_{x x}(t, x) & =0, \quad(t, x) \tag{5.1}\\
u(0, x) & =\phi(x), \quad x \in \mathbb{R}, \tag{5.2}
\end{align*}
$$

and there exists two constants $c, C>0$ such that

$$
\begin{equation*}
|u(t, x)| \leq C e^{c x^{2}}, \quad(t, x) \in(0, T) \times \mathbb{R} . \tag{5.3}
\end{equation*}
$$

Prove
(1) u is the unique solution to the Cauchy problem (5.1), (5.2) satifying (5.3) and

$$
\sup _{(0, T) \times \mathbb{R}}|u| \leq \sup _{\mathbb{R}}|\phi|
$$

(2) Denote

$$
\tilde{u}(t, x)=\sum_{k=0}^{\infty} \frac{d^{k} \varphi(t)}{d t^{k}} \frac{x^{2 k}}{(2 k)!}
$$

where

$$
\varphi(t)= \begin{cases}e^{-\frac{1}{t^{2}}}, & t>0 \\ 0, & t \leq 0\end{cases}
$$

then $u+\tilde{u}$ is a solution to the Cauchy problem (5.1), (5.2).

